[Reposted from http://u.cs.biu.ac.il/~katzmik/infinitesimals.html]
Links to recent publications on infinitesimals and related subjects by Jacques Bair, Tiziana Bascelli, Piotr Błaszczyk, Alexandre Borovik, Emanuele Bottazzi, Robert Ely, Peter Fletcher, Valérie Henry, Frederik Herzberg, Karel Hrbacek, Renling Jin, Vladimir Kanovei, Karin Katz, Taras Kudryk, Semen Samsonovich Kutateladze, Eric Leichtnam, Claude Lobry, Thomas McGaffey, Thomas Mormann, Tahl Nowik, Luie Polev, Patrick Reeder, David Schaps, Mary Schaps, David Sherry, Steven Shnider, and David Tall can be found below.
A nice introduction to our program can be found in the following review by M. Guillaume: Guillaume's review in pdf
2016
Bair, J.; Błaszczyk, P.; Ely, R.; Henry, V.; Kanovei, V.; Katz, K.; Katz, M.; Kutateladze, S.; McGaffey, T.; Reeder, P.; Schaps, D.; Sherry, D.; Shnider, S. "Interpreting the infinitesimal mathematics of Leibniz and Euler." Journal for General Philosophy of Science (2016), to appear. See http://dx.doi.org/10.1007/s10838-016-9334-z and http://arxiv.org/abs/1605.00455
Bascelli, T.; Błaszczyk, P.; Kanovei, V.; Katz, K.; Katz, M.; Schaps, D.; Sherry, D. "Leibniz versus Ishiguro: Closing a Quarter Century of Syncategoremania." HOPOS: The Journal of the International Society for the History of Philosophy of Science 6 (2016), no. 1, 117-147. See http://dx.doi.org/10.1086/685645 and http://arxiv.org/abs/1603.07209
Błaszczyk, P.; Borovik, A.; Kanovei, V.; Katz, K.; Katz, M.; Kudryk, T.; Kutateladze, S.; Sherry, D. "A non-standard analysis of a cultural icon: The case of Paul Halmos." Logica Universalis.http://dx.doi.org/10.1007/s11787-016-0153-0 and http://arxiv.org/abs/1607.00149. Available as 'Online First':
http://link.springer.com/article/10.1007/s11787-016-0153-0
Błaszczyk, P.; Kanovei, V.; Katz, K.; Katz, M.; Kudryk, T.; Mormann, T.; Sherry. D. "Is Leibnizian calculus embeddable in first order logic?" Foundations of Science, online first. http://dx.doi.org/10.1007/s10699-016-9495-6 and http://arxiv.org/abs/1605.03501
Błaszczyk, P.; Kanovei, V.; Katz, K.; Katz, M.; Kutateladze, S.; Sherry. D. "Toward a history of mathematics focused on procedures." Foundations of Science, online first.
Błaszczyk, P.; Kanovei, V.; Katz, M.; Sherry, D. "Controversies in the foundations of analysis: Comments on Schubring's Conflicts." Foundations of Science. See http://dx.doi.org/10.1007/s10699-015-9473-4 andhttp://arxiv.org/abs/1601.00059 See also Reception
Gutman, A.; Katz, M.; Kudryk, T.; Kutateladze, S. "The Mathematical Intelligencer Flunks the Olympics." Foundations of Science (2016). See http://dx.doi.org/10.1007/s10699-016-9485-8 andhttp://arxiv.org/abs/1606.00160
Kanovei, V.; Katz, K.; Katz, M.; Nowik, T. "Small oscillations of the pendulum, Euler's method, and adequality." Quantum Studies: Mathematics and Foundations, online first. See http://dx.doi.org/10.1007/s40509-016-0074-x and http://arxiv.org/abs/1604.066632015
Kanovei, V.; Katz, K.; Katz, M.; Schaps, M. "Proofs and Retributions, Or: Why Sarah Can't Take Limits." Foundations of Science 20 (2015), no. 1, 1-25. See http://dx.doi.org/10.1007/s10699-013-9340-0 andhttp://www.ams.org/mathscinet-getitem?mr=3312498
Kanovei, V.; Katz, K.; Katz, M.; Sherry, D. "Euler's lute and Edwards' oud." The Mathematical Intelligencer 37 (2015), 48-51. See http://arxiv.org/abs/1506.02586 and http://dx.doi.org/10.1007/s00283-015-9565-6and http://www.ams.org/mathscinet-getitem?mr=3435825 see also Reception
Katz, M.; Kutateladze, S. "Edward Nelson (1932-2014)." The Review of Symbolic Logic 8 (2015), no. 3, 607-610. See http://dx.doi.org/10.1017/S1755020315000015 and http://arxiv.org/abs/1506.01570
Nowik, T; Katz, M. "Differential geometry via infinitesimal displacements." Journal of Logic and Analysis 7:5 (2015), 1-44. See http://www.logicandanalysis.org/index.php/jla/article/view/237/106 andhttp://arxiv.org/abs/1405.0984 and http://www.ams.org/mathscinet-getitem?mr=3457545
2014
Bascelli, T.; Bottazzi, E.; Herzberg, F.; Kanovei, V.; Katz, K.; Katz, M.; Nowik, T.; Sherry, D.; Shnider, S. "Fermat, Leibniz, Euler, and the gang: The true history of the concepts of limit and shadow." Notices of the American Mathematical Society 61 (2014), no. 8, 848-864. See http://www.ams.org/notices/201408/rnoti-p848.pdf and http://arxiv.org/abs/1407.0233
Katz, K.; Katz, M.; Kudryk, T. "Toward a clarity of the extreme value theorem." Logica Universalis 8 (2014), no. 2, 193-214. See http://arxiv.org/abs/1404.5658 and http://dx.doi.org/10.1007/s11787-014-0102-8 andhttp://www.ams.org/mathscinet-getitem?mr=3210286
Sherry, D.; Katz, M. "Infinitesimals, imaginaries, ideals, and fictions." Studia Leibnitiana 44 (2012), no. 2, 166-192. See http://arxiv.org/abs/1304.2137 (Article was published in 2014 even though the journal issue lists the year as 2012)
Tall, D.; Katz, M. "A cognitive analysis of Cauchy's conceptions of function, continuity, limit, and infinitesimal, with implications for teaching the calculus." Educational Studies in Mathematics 86 (2014), no. 1, 97-124. See http://dx.doi.org/10.1007/s10649-014-9531-9 and http://arxiv.org/abs/1401.1468
2013
Bair, J.; Błaszczyk, P.; Ely, R.; Henry, V.; Kanovei, V.; Katz, K.; Katz, M.; Kutateladze, S.; McGaffey, T.; Schaps, D.; Sherry, D.; Shnider, S. "Is mathematical history written by the victors?" Notices of the American Mathematical Society 60 (2013) no. 7, 886-904. Accessible here, http://www.ams.org/notices/201307/rnoti-p886.pdf, http://www.ams.org/mathscinet-getitem?mr=3086638, and http://arxiv.org/abs/1306.5973
Błaszczyk, P.; Katz, M.; Sherry, D. "Ten misconceptions from the history of analysis and their debunking." Foundations of Science 18 (2013), no. 1, 43-74. See http://dx.doi.org/10.1007/s10699-012-9285-8,http://www.ams.org/mathscinet-getitem?mr=3031794, http://arxiv.org/abs/1202.4153, and Reception
Kanovei, V.; Katz, M.; Mormann, T. "Tools, Objects, and Chimeras: Connes on the Role of Hyperreals in Mathematics." Foundations of Science 18 (2013), no. 2, 259--296. See http://dx.doi.org/10.1007/s10699-012-9316-5, http://www.ams.org/mathscinet-getitem?mr=3064607, and http://arxiv.org/abs/1211.0244
Katz, M.; Leichtnam, E. "Commuting and noncommuting infinitesimals." American Mathematical Monthly 120 (2013), no. 7, 631-641. See http://dx.doi.org/10.4169/amer.math.monthly.120.07.631,http://www.ams.org/mathscinet-getitem?mr=3096469, and http://arxiv.org/abs/1304.0583
Katz, M.; Schaps, D.; Shnider, D. "Almost Equal: The Method of Adequality from Diophantus to Fermat and Beyond." Perspectives on Science 21 (2013), no. 3, 283-324. Seehttp://www.mitpressjournals.org/doi/abs/10.1162/POSC_a_00101, http://www.ams.org/mathscinet-getitem?mr=3114421, and http://arxiv.org/abs/1210.7750
Katz, M.; Sherry, D. "Leibniz's Infinitesimals: Their Fictionality, Their Modern Implementations, And Their Foes From Berkeley To Russell And Beyond." Erkenntnis 78 (2013), no. 3, 571-625. Seehttp://dx.doi.org/10.1007/s10670-012-9370-y, http://www.ams.org/mathscinet-getitem?mr=3053644, and http://arxiv.org/abs/1205.0174
Katz, M.; Tall, D. "A Cauchy-Dirac delta function." Foundations of Science, 18 (2013), no. 1, 107-123. See http://dx.doi.org/10.1007/s10699-012-9289-4, http://www.ams.org/mathscinet-getitem?mr=3031797, andhttp://arxiv.org/abs/1206.0119
Mormann, T.; Katz, M. "Infinitesimals as an issue of neo-Kantian philosophy of science." HOPOS: The Journal of the International Society for the History of Philosophy of Science 3 (2013), no. 2, 236-280. Seehttp://www.jstor.org/stable/10.1086/671348 and http://arxiv.org/abs/1304.1027
2012
Borovik, A.; Jin, R.; Katz, M. "An Integer Construction of Infinitesimals: Toward a Theory of Eudoxus Hyperreals." Notre Dame Journal of Formal Logic 53 (2012), no. 4, 557-570. Seehttp://arxiv.org/abs/1210.7475, http://dx.doi.org/10.1215/00294527-1722755, and http://www.ams.org/mathscinet-getitem?mr=2995420
Borovik, A.; Katz, M. "Who gave you the Cauchy--Weierstrass tale? The dual history of rigorous calculus." Foundations of Science 17 (2012), no. 3, 245-276. see http://dx.doi.org/10.1007/s10699-011-9235-x,http://arxiv.org/abs/1108.2885, and http://www.ams.org/mathscinet-getitem?mr=2950620, as well as http://u.cs.biu.ac.il/~katzmik/straw.html
Katz, K.; Katz, M. "Stevin numbers and reality." Foundations of Science 17 (2012), no. 2, 109-123. See http://dx.doi.org/10.1007/s10699-011-9228-9 and http://arxiv.org/abs/1107.3688 andhttp://www.ams.org/mathscinet-getitem?mr=2935194
Katz, K.; Katz, M. "A Burgessian Critique of Nominalistic Tendencies in Contemporary Mathematics and its Historiography." Foundations of Science 17 (2012), no. 1, 51-89. See http://dx.doi.org/10.1007/s10699-011-9223-1, http://arxiv.org/abs/1104.0375, and http://www.ams.org/mathscinet-getitem?mr=2896999
Katz, M.; Sherry, D. "Leibniz's laws of continuity and homogeneity." Notices of the American Mathematical Society 59 (2012), no. 11, 1550-1558. See http://www.ams.org/notices/201211/rtx121101550p.pdf,http://arxiv.org/abs/1211.7188, http://www.ams.org/mathscinet-getitem?mr=3027109, and http://u.cs.biu.ac.il/~katzmik/straw2.html
Katz, M.; Tall, D. "Tension between Intuitive Infinitesimals and Formal Mathematical Analysis." Chapter in: Bharath Sriraman, Editor. Crossroads in the History of Mathematics and Mathematics Education. The Montana Mathematics Enthusiast Monographs in Mathematics Education 12, Information Age Publishing, Inc., Charlotte, NC, 2012, pp. 71-89. See http://arxiv.org/abs/1110.5747
2011
Katz, K.; Katz, M. "Meaning in Classical Mathematics: Is it at Odds with Intuitionism?" Intellectica 56 (2011), no. 2, 223-302. See http://arxiv.org/abs/1110.5456
Katz, K.; Katz, M. "Cauchy's continuum." Perspectives on Science 19 (2011), no. 4, 426-452. See http://dx.doi.org/10.1162/POSC_a_00047, http://arxiv.org/abs/1108.4201, and http://www.ams.org/mathscinet-getitem?mr=2884218
2010
Ely, R. "Nonstandard student conceptions about infinitesimal and infinite numbers." Journal for Research in Mathematics Education 41 (2010), no. 2, 117-146. See http://www.nctm.org/publications/article.aspx?id=26196 and http://u.cs.biu.ac.il/~katzmik/ely10.pdf
Katz, K.; Katz, M. "Zooming in on infinitesimal 1-.9.. in a post-triumvirate era." Educational Studies in Mathematics 74 (2010), no. 3, 259-273. See http://arxiv.org/abs/arXiv:1003.1501
Katz, K.; Katz, M. "When is .999... less than 1?" The Montana Mathematics Enthusiast 7 (2010), No. 1, 3--30. See http://www.math.umt.edu/tmme/vol7no1/TMME_vol7no1_2010_article1_pp.3_30.pdf andhttp://arxiv.org/abs/arXiv:1007.3018